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Wherever an internal photon line occurs in a Feynman diagram, we shall see in
Chapter 13 that we also have the possibility of a contribution from a massive
neutral weak boson Zoo Although the Feynman rules for the weak bosons are
given in detail in Chapter 13, it is worth quickly anticipating the possible effect of
y_ZO interference. Processes such as e-e+, J.L-J.L+ with s-channel or
"time-like" Feynman diagrams should increasingly feel the effects of any such Z
bosons as the center-of-mass energy approaches its mass value M z . From Table
6.1, it is clear that it is preferable to study J.L-J.L+ rather than Bhabha
scattering, since in the latter process, Z effects will be swamped by t-channel
photon exchange. The details are given in Section 13.6.

6.8 e - J.L - e - J.L - in the Laboratory Frame. Kinematics Relevant to the
Parton Model

Before we leave fermion scattering, it is useful to introduce laboratory frame
kinematics, that is, the frame where the initial J.L is at rest. We can then directly
apply these results to electron-quark scattering when probing the structure of
hadrons in Chapter 8 and onward.
We return to the "exact" formula (6.27) for e-(k) + J.L-(p) e-(k') + J.L-(p')

and neglect only the terms involving the electron mass m,
-- 8e 4

-[(k" p')(k· p) +(k" p)(k· p') - M 2k'· k]q4

= 8;44 [_ q2( k . p - k' . p) + 2( k' . p )( k . p) + M 2q2] (6.42)

where q = k - k'. To obtain the last line, we have used p' = k - k' + p,
k 2 = k,2 "" 0 and q2 "" - 2k . k'.
We wish to evaluate the cross section in the laboratory frame, the frame in

which the muon is initially at rest, p = (M, 0). The particle momenta in this frame
are shown in Fig. 6.10.

k' = (E', k')

k= (E, k)

Fig. 6.10 The process e- JL - -> e- JL - in the laboratory
p' frame.
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Inserting (6.43) into (6.46) and using (6.47), we obtain

da (20:E,)2 { 2 (J q2. 2 (J} ( q2 )
dE'dn = q4 cos "2 - 2M2 SIll"2 p + 2M .

Using (6.48), we may perform the dE' integration and, replacing q2 by (6.44), we
finally arrive at the following formula for the differential cross section for e- /L-
scattering in the laboratory frame:

da I ( 0:
2

) E' { 2 (J q2. 2 (J }dn = (J E cos "2 - --2SIll "2 .
lab. 4E 2 • 4 2MSIll "2

(6.50)

A powerful technique for exploring the internal structure of a target is to
bombard it with a beam of high-energy electrons and to observe the angular
distribution and energy of the scattered electrons. Such experiments have re-
peatedly led to major advances in our understanding of the structure of matter.
Starting in Chapter 8, we describe how this method has revealed the structure of
the proton. Equation (6.50) plays a central role in the story.

EXERCISE 6.8 Show that the cross section for elastic scattering of un-
polarized electrons from spinless point-like particles is

(6.51)

where as before we neglect the mass of the electron. Justify using (6.18) with
L;::,uon replaced by (p + p'),.( P + p')•. Comparing the cross section with
that for e-/L--'> e-/L-, we see that the sin2«(J/2) in (6.50) is due to
scattering from the magnetic moment of the muon.

6.9 Photons. Polarization Vectors

We have already noted that, in the presence of a current density j, the electromag-
netic field A/1 satisfies

(6.52)

The following two exercises recall how this equation anses from Maxwell's
equations.

Evaluating (6.42) in the laboratory frame, we find

1()R12= 8;44 (_ E - E') + 2EE'M2 + M 2q2)

8e 4 2, {. q2 q2 M( E - E') }
= 7 2M E E 1 + 4EE' - 2M2 2EE'

To reach the last line, we have used the following kinematic relations:

q2"", -2k. k' "'" -2EE'(1 - cosO) =

Also, squaring q + P = p', we obtain

(6.43)

(6.44)

q2= -2p.q= -2vM so v= E - E' =_L2M· (6.45)

To calculate the e - J.L . e - J.L - cross section, we make use of (4.27):

(6.46)

The flux is the product of beam and target densities (2E)(2M) multiplied by the
relative velocity which is 1 (i.e., the speed of light) in the limit where the electron
mass has been neglected.

EXERCISE 6.7 Justify the following relations:

1 ( q2 )
= v + 2M

= - EIA),

(6.47)

(6.48)

where A = 1 + (2EIM )sin2 and the step function O(x) is 1 if x > 0 and
ootherwise.

(6.49)
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If Iq I is not too large, we can expand the exponential in (8.3), giving

F(q) = f( 1 + iq'x - + ... )p(x) d 3x

1 2( 2)= 1 - 6"lql r +"', (8.9)

where we have assumed that p is spherically symmetric, that is, a function of
r == Ix I alone. The small-angle scattering therefore just measures the mean square
radius <r 2 ) of the charge cloud. This is because in the small Iq I limit the photon
in Fig. 8.1 is soft and with its large wavelength can resolve only the size of the
charge distribution p( r) and is not sensitive to its detailed structure.

EXERCISE 8.4 If the charge distribution p(r) has an exponential form,
e- mr, show, using (8.3), that the form factor

(

2 ) - 2
F(lql)oc 1-

8.2 Electron-Proton Scattering. Proton Form Factors

The above discussion cannot be applied directly to yield the structure of the
proton. First, the proton's magnetic moment is involved in the scattering of the
electron, not just its charge. Second, the proton is not static, but will recoil under
the electron's bombardment. If, however, the proton were a point charge e with a
Dirac magnetic moment e/2M, then we already know the answer. We can take
over the result for electron-muon scattering, (6.50), and simply replace the mass
of the muon by that of the proton:

I = ( 0:

2
0 1EE' {cos2 -20 - sin2 -2

0
}, (8.10)

lab 4E2 sin4 _ 2M"
2

where the factor
E' 1
E 2E . 20 '1 + - SIn -M 2

given by (6.48), arises from the recoil of the target.
Copying the calculation of the electron-muon cross section, the lowest-order

amplitude for electron-proton elastic scattering, Fig. 8.2, is given by [see (6.8)]

T - -'f' (- -l. )Jp. d 4Ii - I Jp. q2 X,

(6.49)

132 Electrodynamics of Spino! Particles

Inserting (6.43) into (6.46) and using (6.47), we obtain

da (20:E,)2 { 2 (J q2. 2 (J} ( q2 )
dE'dn = q4 cos "2 - 2M2 SIll"2 p + 2M .

Using (6.48), we may perform the dE' integration and, replacing q2 by (6.44), we
finally arrive at the following formula for the differential cross section for e- /L-
scattering in the laboratory frame:

da I ( 0:
2

) E' { 2 (J q2. 2 (J }dn = (J E cos "2 - --2SIll "2 .
lab. 4E 2 • 4 2MSIll "2

(6.50)

A powerful technique for exploring the internal structure of a target is to
bombard it with a beam of high-energy electrons and to observe the angular
distribution and energy of the scattered electrons. Such experiments have re-
peatedly led to major advances in our understanding of the structure of matter.
Starting in Chapter 8, we describe how this method has revealed the structure of
the proton. Equation (6.50) plays a central role in the story.

EXERCISE 6.8 Show that the cross section for elastic scattering of un-
polarized electrons from spinless point-like particles is

(6.51)

where as before we neglect the mass of the electron. Justify using (6.18) with
L;::,uon replaced by (p + p'),.( P + p')•. Comparing the cross section with
that for e-/L--'> e-/L-, we see that the sin2«(J/2) in (6.50) is due to
scattering from the magnetic moment of the muon.

6.9 Photons. Polarization Vectors

We have already noted that, in the presence of a current density j, the electromag-
netic field A/1 satisfies

(6.52)

The following two exercises recall how this equation anses from Maxwell's
equations.



M.C. Kumar

Electron proton elastic scattering
176 The Structure of Hadrons

Fig. 8.2 Lowest-order electron-proton elastic
p' scattering.

where q = p' - p and the electron and proton transition currents are, respec-
tively,

j'" = -e ii(k')y'" u(k) ei(k'-k)'x
J'" = e U(p')[ ]U(p) ei(p'-p).X,

(8.11)

(8.12)

see (6.6). Since the proton is an extended structure, we cannot replace the square
brackets in (8.12) by y"', as for point spin-! particles in (8.11). But we know that
J'" must be a Lorentz four-vector, and so we must use the most general four-vec-
tor form that can be constructed from p, p', q and the Dirac y-matrices sand-
wiched between u and u. There are only two independent terms, y'" and ia"'vqv '
and their coefficients are functions of q2 (q2 is the only independent scalar
variable at the proton vertex). Terms involving y5 are ruled out by the conserva-
tion of parity. Therefore, quite generally, we may write the square bracket of
(8.12) in the form

(8.13)

where F1 and F2 are two independent form factors and K is the anomalous
magnetic moment (see Exercise 6.2).

EXERCISE 8.5 Show that current conservation, J",J'" = 0, rules out
(p - p')'" as a possible four-vector. Why do we not show a term involving
(p + p')'" in (8.13)?

EXERCISE 8.6 Show that p . q is not an independent scalar variable by
expressing it in terms of the variable q2.

For q2 --+ 0, that is, when we probe with long-wavelength photons, it does not
make any difference that the proton has structure at the order of 1 fermi. We
effectively see a particle of charge e and magnetic moment (1 + K)e/2M, where
K, the anomalous moment, is measured to be 1.79. The factors in (8.13) must
therefore be chosen so that in this limit

(8.14)

The corresponding values for the neutron are F1(0) = 0, F2(0) = 1, and experi-
mentally K n = -1.91.
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(p - p')'" as a possible four-vector. Why do we not show a term involving
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The corresponding values for the neutron are F1(0) = 0, F2(0) = 1, and experi-
mentally K n = -1.91.

(8.15)
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If we use (8.13) to calculate the differential cross section for electron-proton
elastic scattering, we find an expression similar to (8.10):

q2 ( )2 . 2 0 }- 2M2 F) + KF2 SIn 2" '

see (6.50). This is known as the Rosenbluth formula. The two form factors,
F), 2 (q2), parametrize our ignorance of the detailed structure of the proton
represented by the blob in Fig. 8.2. These form factors can be determined
experimentally by measuring as a function of 0 and q2. Note that if the
proton were a point particle like the muon, then K = 0 and F)(q2) = 1 for all q2,
and (8.15) would revert to (8.10).
In practice, it is better to use linear combinations of F1,2'

_ Kq2
G£ = F) + 4M2F2

(8.16)

(8.17)

defined so that no interference terms, G£GM , occur in the cross section. Equation
(8.15) becomes

do I (X2 E' ( Gi + TG1 2 0 2 • 2 0 )
d o = 0 -E 1 + T cos 2" + 2TGM SIn 2" '

lab 4E2' 4
SIn 2"

with T == -q2/4M2.
Now that interference terms have disappeared, these proton form factors may

be regarded as generalizations of the nonrelativistic form factor introduced in
Section 8.1, and so it would be nice if we could interpret their Fourier transforms
as the charge and magnetic moment distributions of the 'proton. Unfortunately,
the recoil of the proton makes this impossible. However, it is possible to show
that the form factors G£(q2) and GM (q2) are closely related to the proton charge
and magnetic moment distributions, respectively, in a particular Lorentz frame,
called the Breit (or brick wall) frame, defined by p' = - p.

EXERCISE 8.7 Show that the proton transition current, jlJ.(x) of (8.12),
can be rewritten in the form

(8.18)

Evaluate 1"(0) == (p, J) in the Breit frame (p' = - p). There is no energy

180 The Structure of Hadrons

I I

E= 10 GeV
e= 6°

1.5

Q)

i;;
,. 1.0
>Q)
(:J
.ci.:;

0.5
"'c:
'"

:\ ..
I
I
I
II

III
.l

o0"------'---....''-'-'-· ........

W (GeV/c2 )

Fig. 8.6 The ep -> eX cross section as a function of the missing mass W. Data are from
the Stanford Linear Accelerator. The elastic peak at W = M has been reduced by a factor
of 8.5.

The problem now facing us is illustrated by recalling (8.11), (8.12), and Fig. 8.2.
The switch from a muon to a proton target was made by replacing the lepton
current)" (- uy"u) by a proton current J" (- uf"u), and the most general form
of f" was constructed. This is inadequate to describe the inelastic events of Fig.
8.5. Although everything above the dashed line in Fig. 8.5 remains unchanged (a
fact which we shall exploit), the final sLate below it is not a single fermion
described by a Dirac "u" entry in the matrix element or Current. Therefore, J"
must have a more complex structure than (8.12). Instead, the expression for the
cross section [see (6.18)]

(8.22)

is directly generalized to

do - L;"W"" , (8.23)
where L;" represents the lepton tensor of (6.20), since everything in the leptonic
part of the diagram above the photon propagator in Fig. 8.5 is left unchanged.
The hadronic tensor W"" serves to parametrize our total ignorance of the form of
the current at the other end of the propagator. The most general form of the
tensor W"" must now be constructed out of g"" and the independent momenta p
and q (pi = P + q). y" is not included, as we are parametrizing the cross section
which is already summed and averaged over spins. We write

W2 W4 Jt5
W"" = - W:g"" + -p"p" + -q"q" + -(p"q" + q"p"). (8.24)

I M2 M2 M 2
We have omitted antisymmetric contributions to W"", since their contribution to
the cross section vanishes after insertion into (8.23) because the tensor L;" is
symmetric. Note the omission of W3 in our notation; this spot is reserved for a
parity-violating structure function when a neutrino beam is substituted for the
electron beam, so that the virtual photon probe is replaced by a weak boson; see
Perl (1974), Close (1979), or Llewellyn Smith (1972).
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Fig. 8.2 Lowest-order electron-proton elastic
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do I (X2 E' ( Gi + TG1 2 0 2 • 2 0 )
d o = 0 -E 1 + T cos 2" + 2TGM SIn 2" '

lab 4E2' 4
SIn 2"

with T == -q2/4M2.
Now that interference terms have disappeared, these proton form factors may

be regarded as generalizations of the nonrelativistic form factor introduced in
Section 8.1, and so it would be nice if we could interpret their Fourier transforms
as the charge and magnetic moment distributions of the 'proton. Unfortunately,
the recoil of the proton makes this impossible. However, it is possible to show
that the form factors G£(q2) and GM (q2) are closely related to the proton charge
and magnetic moment distributions, respectively, in a particular Lorentz frame,
called the Breit (or brick wall) frame, defined by p' = - p.

EXERCISE 8.7 Show that the proton transition current, jlJ.(x) of (8.12),
can be rewritten in the form

(8.18)

Evaluate 1"(0) == (p, J) in the Breit frame (p' = - p). There is no energy
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Fig. 8.2 Lowest-order electron-proton elastic
p' scattering.

where q = p' - p and the electron and proton transition currents are, respec-
tively,
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J'" = e U(p')[ ]U(p) ei(p'-p).X,

(8.11)

(8.12)

see (6.6). Since the proton is an extended structure, we cannot replace the square
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tor form that can be constructed from p, p', q and the Dirac y-matrices sand-
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and their coefficients are functions of q2 (q2 is the only independent scalar
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(8.13)

where F1 and F2 are two independent form factors and K is the anomalous
magnetic moment (see Exercise 6.2).
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(p - p')'" as a possible four-vector. Why do we not show a term involving
(p + p')'" in (8.13)?

EXERCISE 8.6 Show that p . q is not an independent scalar variable by
expressing it in terms of the variable q2.

For q2 --+ 0, that is, when we probe with long-wavelength photons, it does not
make any difference that the proton has structure at the order of 1 fermi. We
effectively see a particle of charge e and magnetic moment (1 + K)e/2M, where
K, the anomalous moment, is measured to be 1.79. The factors in (8.13) must
therefore be chosen so that in this limit

(8.14)

The corresponding values for the neutron are F1(0) = 0, F2(0) = 1, and experi-
mentally K n = -1.91.
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Fig. 8.3 The Breit or brick-wall frame, p' = - p.

transferred to the proton in this frame, and it behaves as if it had bounced
off a brick wall, see Fig. 8.3. If the z axis is chosen along p and helicity
spinors are used, show that

p = 2MeGE(q2) forA = -N,

J] ±.iJ2 = +2IqleGM(q2) forA = A' = +L (8.19)
and that all other matrix elements are zero; A and A' denote the initial and
final proton helicities, respectively. Determine the corresponding values of
the helicity of the virtual photon.

In generalizing the form factor of Section 8.1, we have replaced F( Iq I) by
F(q2). However, as long as Iql2 «: M 2, we can take over the Fourier transform
interpretation of Section 8.1.

EXERCISE 8.8 Show that for Iql2 «: M 2, the form factors GE and GM
are the Fourier transforms of the proton's charge and magnetic moment
distributions, respectively.

GE and GM are referred to as the electric and magnetic form factors, respec-
tively. The data on the angular dependence of ep --+ ep scattering can be used to
separate GE, GM at different values of q2, see (8.17). The result for GE(q2) is
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Fig.8.4 The proton form factors as a function of q2.
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shown in Fig. 8.4. GM (q2) has the same q2 dependence. A closer look at Fig. 8.4
reveals that

G£{q2):::::: (1 - r2 (in units of GeV2
). (8.20)

The behavior for small - q2 can be used to determine the residual terms in the
expansion of (8.9). In particular, the mean square proton charge radius is

(r 2) = 6( dG£{;2)) = (0.81 X 10- 13 cmf (8.21)
dq q2_0

The same radius of about 0.8 fm is obtained for the magnetic moment distribu-
tion. Using the result of Exercise 8.4, we conclude that the charge distribution of
the nucleon has an exponential shape in configuration space.

8.3 Inelastic Electron-Proton Scattering ep -+ eX

Having measured the size of the proton, one might like to take a more detailed
look at its structure by increasing the - q2 of the photon to give better spatial
resolution. This can be done simply by requiring a large energy loss of the
bombarding electron. There is, however, a catch: because of the large transfer of
energy, the proton will often break up, and the picture of Fig. 8.2 has to be
generalized to Fig. 8.5. For modest - q2, one might just excite the proton into a

and hence produce an extra '1T-meson, that is, ep -+ + -+ ep '1T 0. In these
events, the invariant mass (see Fig. 8.5) is W 2 :::::: Mi. When _q2 is very large,
however, the debris becomes so messy that the initial state proton loses its
identity completely and a new formalism must be devised to extract information
from the measurements. Figure 8.6 shows the invariant mass distribution. One
notices the peak when the proton does not break up (W :::::: M) and broader peaks
when the target is excited to resonant baryon states. Beyond the resonances, the
complicated multiparticle states with large invariant mass result in a smooth
distribution in missing mass W.

k k'
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p. s N

Invariant
mass W

Fig. 8.5 Lowest-order diagram for ep ->

eX.
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Fig. 8.6 The ep -> eX cross section as a function of the missing mass W. Data are from
the Stanford Linear Accelerator. The elastic peak at W = M has been reduced by a factor
of 8.5.

The problem now facing us is illustrated by recalling (8.11), (8.12), and Fig. 8.2.
The switch from a muon to a proton target was made by replacing the lepton
current)" (- uy"u) by a proton current J" (- uf"u), and the most general form
of f" was constructed. This is inadequate to describe the inelastic events of Fig.
8.5. Although everything above the dashed line in Fig. 8.5 remains unchanged (a
fact which we shall exploit), the final sLate below it is not a single fermion
described by a Dirac "u" entry in the matrix element or Current. Therefore, J"
must have a more complex structure than (8.12). Instead, the expression for the
cross section [see (6.18)]

(8.22)

is directly generalized to

do - L;"W"" , (8.23)
where L;" represents the lepton tensor of (6.20), since everything in the leptonic
part of the diagram above the photon propagator in Fig. 8.5 is left unchanged.
The hadronic tensor W"" serves to parametrize our total ignorance of the form of
the current at the other end of the propagator. The most general form of the
tensor W"" must now be constructed out of g"" and the independent momenta p
and q (pi = P + q). y" is not included, as we are parametrizing the cross section
which is already summed and averaged over spins. We write

W2 W4 Jt5
W"" = - W:g"" + -p"p" + -q"q" + -(p"q" + q"p"). (8.24)

I M2 M2 M 2
We have omitted antisymmetric contributions to W"", since their contribution to
the cross section vanishes after insertion into (8.23) because the tensor L;" is
symmetric. Note the omission of W3 in our notation; this spot is reserved for a
parity-violating structure function when a neutrino beam is substituted for the
electron beam, so that the virtual photon probe is replaced by a weak boson; see
Perl (1974), Close (1979), or Llewellyn Smith (1972).
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8.3 Inelastic Electron-Proton Scattering ep -> eX 181

EXERCISE 8.9 Show that indeed L;" = and that

(8.25)

EXERCISE 8.10 Show that current conservation at the hadronic vertex
requires

(8.26)

The proof may be left until after (8.39); it follows from Jll.jll. = O. As a
result of (8.26), verify that

p.qW5 = --2-W2'
q

Thus, only two of the four inelastic structure functions of (8.24) are indepen-
dent; so we may write

WIl." = WI ( - gil." + q;r ) + W2 ( pll. - Pq·2q qll. ) ( p" - Pq·2q q" ),

(8.27)

where the JV; 's are functions of the Lorentz scalar variables that can be con-
structed from the four-momenta at the hadronic vertex. Unlike elastic scattering,
there are two independent variables, and we choose

and (8.28)

The invariant mass Wof the final hadronic system is related to p and q2 by

(8.29)

EXERCISE 8.11 It is common to replace p and q2 by the dimensionless
variables

_q2 _q2
x=--=--2p· q 2Mp' (8.30)

where the four-momenta are shown on Fig. 8.5. Show that the allowed
kinematic region for ep --+ eX is 0 :s; x :s; 1 and 0 :s; y :s; 1. Sketch this
physical region in the P, q2 plane and check your answer with Fig. 9.3.
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WIl." = WI ( - gil." + q;r ) + W2 ( pll. - Pq·2q qll. ) ( p" - Pq·2q q" ),

(8.27)

where the JV; 's are functions of the Lorentz scalar variables that can be con-
structed from the four-momenta at the hadronic vertex. Unlike elastic scattering,
there are two independent variables, and we choose

and (8.28)

The invariant mass Wof the final hadronic system is related to p and q2 by

(8.29)

EXERCISE 8.11 It is common to replace p and q2 by the dimensionless
variables

_q2 _q2
x=--=--2p· q 2Mp' (8.30)

where the four-momenta are shown on Fig. 8.5. Show that the allowed
kinematic region for ep --+ eX is 0 :s; x :s; 1 and 0 :s; y :s; 1. Sketch this
physical region in the P, q2 plane and check your answer with Fig. 9.3.
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EXERCISE 8.12 Show that in the rest frame of the target proton,

P = E - E', E- E'Y= E

where E and E' are the initial and final electron energies, respectively.

Evaluation of the cross section for ep --+ eX is a straightforward repetition of
the same calculation for e-p.---+ e-p.- (or ep --+ ep) scattering with the substitu-
tion of J¥,.v' given by (8.27), for L;:'vuon (or Ltv)' Using the expression (6.25) for
(Le)"v and noting (8.25), we find

(8.31)

In the laboratory frame, this becomes

(8.32)

see (6.44). By including the flux factor, (4.32), and the phase space factor for the
outgoing electron, (4.24), we can obtain the inclusive differential cross section for
inelastic electron-proton scattering, ep --+ eX,

(8.33)

where 1'J1L1 2 is given by the expression in the braces [recall (6.18)]. The extra
factor of 4'1TM arises because we have adopted the standard convention for the
normalization of W"V. Inserting (8.32) in (8.33) yields

do 1 - (X2 { ( 2) 20 (2) . 2O}dE'dfl - 0 W2 P, q cos 2" + 2W1 P, q SIn 2" '
lab 4E 2 sin4 _

2

(8.34)

where, as usual, we neglect the mass of the electron.
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Electron proton inelastic scattering184 The Structure of Hadrons

First, for a muon target of mass m (or a quark target of mass m after substitution
a2 --+ a2e; where eq is the quark's fractional charge),

{ }e"-+e,, = (cos2 - 2:2 sin
2 )c5(v + (8.41)

For elastic scattering from a proton target,

{ }ep-+ep = (Gil cos2 + 2-rG1sin2 )c5(v + (8.42)

where -r = -q2/4M2 and Mis the mass of the proton. Finally, for the case when
the proton target is broken up by the bombarding electron,

{} _ ( 2) 2 () (2) . 2 () ()ep-+eX - W2 V, q cos "2 + 2W1 V, q SIn "2. 8.43

Making use of the delta function, (8.41) and (8.42) can be integrated over E' with
the result [see (6.50)]

do
dfl ). (8.44)

EXERCISE 8.13 The above results assume (lowest-order) single photon
exchange is dominant. If two-photon exchange were significant, convince
yourself that the e- p and e + p cross sections would not be equal.

8.5 Inelastic Electron Scattering as a (Virtual) Photon-Proton Total
Cross Section

It is clear from the above discussion that the important issue is what happens
below the dashed line in Fig. 8.5, where a (virtual) photon interacts with a proton.
The role of the electron beam is simply that it is responsible for the presence of
the virtual photon. It is useful to display these facts in our formalism. We start by
writing the total cross section for scattering a real photon, with energy qO = v == K
and (transverse) polarization E, off the same unpolarized proton target producing
two or more final-state particles. Using the Feynman rules and cross section
kinematics which we have developed, we obtain

1 ( 1 ) N ( d
3
p' )otot(yp --+ X) = L - L TI n

(2K)(2M) N 2 s f n=l
xL (2'17)4 c5 4 ( P+ q - )E"*EVe2<p, sIJ"tIX)<XIJvlp, s),

Sf' 11

(8.45)
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9
Partons

Equipped with the formalism of Chapter 8, we can now tum to the experimental
information and ask the question, "Can small-wavelength photons resolve the
quarks inside the proton target?"

9.1 Bjorken Scaling

If simple, point-like, spin-! quarks reside inside the proton, we should be able to
illuminate them with a small-wavelength (large _q2) virtual photon beam (Fig.
9.1). The fact that such photons break up the proton target can be handled by
using the inelastic form factors discussed in the previous chapter. The sign that
there are structureless particles inside a complex system like a proton is that for
small wavelengths, the proton described by (8.43) suddenly starts behaving like a
free Dirac particle (a quark) and (8.43) turns into (8.41). The proton structure
functions thus become simply

2JV,point =
1 2m2 2m '

w;point = (p -

For convenience, we have introduced the positive variable

(9.1)

Here, m is the quark mass; the "point" notation reminds us the quark is a
structureless Dirac particle. Equation (9.1) can be pictured as

(9.2)

Quark

188

Electron muon scattering 

Electron proton elastic scattering 

Electron proton inelastic scattering 
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For point like particles184 The Structure of Hadrons
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the result [see (6.50)]
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EXERCISE 8.13 The above results assume (lowest-order) single photon
exchange is dominant. If two-photon exchange were significant, convince
yourself that the e- p and e + p cross sections would not be equal.

8.5 Inelastic Electron Scattering as a (Virtual) Photon-Proton Total
Cross Section

It is clear from the above discussion that the important issue is what happens
below the dashed line in Fig. 8.5, where a (virtual) photon interacts with a proton.
The role of the electron beam is simply that it is responsible for the presence of
the virtual photon. It is useful to display these facts in our formalism. We start by
writing the total cross section for scattering a real photon, with energy qO = v == K
and (transverse) polarization E, off the same unpolarized proton target producing
two or more final-state particles. Using the Feynman rules and cross section
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9
Partons

Equipped with the formalism of Chapter 8, we can now tum to the experimental
information and ask the question, "Can small-wavelength photons resolve the
quarks inside the proton target?"

9.1 Bjorken Scaling

If simple, point-like, spin-! quarks reside inside the proton, we should be able to
illuminate them with a small-wavelength (large _q2) virtual photon beam (Fig.
9.1). The fact that such photons break up the proton target can be handled by
using the inelastic form factors discussed in the previous chapter. The sign that
there are structureless particles inside a complex system like a proton is that for
small wavelengths, the proton described by (8.43) suddenly starts behaving like a
free Dirac particle (a quark) and (8.43) turns into (8.41). The proton structure
functions thus become simply

2JV,point =
1 2m2 2m '

w;point = (p -

For convenience, we have introduced the positive variable

(9.1)

Here, m is the quark mass; the "point" notation reminds us the quark is a
structureless Dirac particle. Equation (9.1) can be pictured as

(9.2)
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Fig. 9.1 (a) Elastic ep -> ep scattering in which a
large-wavelength" photon beam" measures the size
of the proton through the elastic form factor
analysis. (b) In deep inelastic scattering a short-
wavelength "photon beam" resolves the quarks
within the proton provided A(:::::: l/V- q2) « IF.

that is, at large Q2, inelastic electron-proton scattering is viewed simply as elastic
scattering of the electron On a "free" quark within the proton. Using the identity
15(xja) = a 15(x), (9.1) may be rearranged to introduce dimensionless structure
functions

2mwpoint(v Q2) =
1 , 2mv 2mv '

vwrint(v,Q2) = 15(1 - 2;:V)' (9.3)

These" point" functions now display the intriguing property that they are only
functions of the ratio Q2j2mv and not of Q2 and v independently. This behavior
can be contrasted with that for ep elastic scattering. For simplicity, set K = 0, so
that GE = GM == G; then, comparing (8.42) and (8.43), we have

welastic = _ Q2 )
1 4M2 2M '

W2elastic = G2(Q2)15(v - (9.4)

In contrast to (9.1), the structure functions of (9.4) contain a form factor G(Q2),
and so cannot be rearranged to be functions of a single dimensionless variable. A
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184 The Structure of Hadrons

First, for a muon target of mass m (or a quark target of mass m after substitution
a2 --+ a2e; where eq is the quark's fractional charge),
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{ }ep-+ep = (Gil cos2 + 2-rG1sin2 )c5(v + (8.42)

where -r = -q2/4M2 and Mis the mass of the proton. Finally, for the case when
the proton target is broken up by the bombarding electron,
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Making use of the delta function, (8.41) and (8.42) can be integrated over E' with
the result [see (6.50)]

do
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EXERCISE 8.13 The above results assume (lowest-order) single photon
exchange is dominant. If two-photon exchange were significant, convince
yourself that the e- p and e + p cross sections would not be equal.

8.5 Inelastic Electron Scattering as a (Virtual) Photon-Proton Total
Cross Section

It is clear from the above discussion that the important issue is what happens
below the dashed line in Fig. 8.5, where a (virtual) photon interacts with a proton.
The role of the electron beam is simply that it is responsible for the presence of
the virtual photon. It is useful to display these facts in our formalism. We start by
writing the total cross section for scattering a real photon, with energy qO = v == K
and (transverse) polarization E, off the same unpolarized proton target producing
two or more final-state particles. Using the Feynman rules and cross section
kinematics which we have developed, we obtain
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analysis. (b) In deep inelastic scattering a short-
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15(xja) = a 15(x), (9.1) may be rearranged to introduce dimensionless structure
functions

2mwpoint(v Q2) =
1 , 2mv 2mv '

vwrint(v,Q2) = 15(1 - 2;:V)' (9.3)

These" point" functions now display the intriguing property that they are only
functions of the ratio Q2j2mv and not of Q2 and v independently. This behavior
can be contrasted with that for ep elastic scattering. For simplicity, set K = 0, so
that GE = GM == G; then, comparing (8.42) and (8.43), we have

welastic = _ Q2 )
1 4M2 2M '

W2elastic = G2(Q2)15(v - (9.4)

In contrast to (9.1), the structure functions of (9.4) contain a form factor G(Q2),
and so cannot be rearranged to be functions of a single dimensionless variable. A

(9.5)
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mass scale is explicitly present; it is set by the empirical value 0.71 GeV in the
dipole formula for G(Q2) which reflects the inverse size of the proton, see (8.20).
As Q2 increases above (0.71 GeV)2, the form factor depresses the chance of
elastic scattering; the proton is more likely to break up. The point structure
functions, on the other hand, depend only on a dimensionless variable Q2/2mp,
and no scale of mass is present. The mass m merely serves as a scale for the
momenta Q2, p.
The discussion can be summarized as follows: if large Q2 virtual photons

resolve" point" constituents inside the proton, then

MW1(p, Q2) F1(w),
large Q2

pW2(p, Q2) F2(w),
large Q2

where
2q· P 2MI'

W=--=-. (9.6)
Q2 Q2

Note that in (9.5) we have changed the scale from what it was in (9.3). We have
introduced the proton mass instead of the quark mass to define the dimensionless
variable w. The presence of free quarks is signaled by the fact that the inelastic
structure functions are independent of Q2 at a given value of w [see (9.5)]. This is
equivalent to the onset of sin -4(012) behavior for large momentum transfers in
the Rutherford experiment, which reveals the "point" charge of the nucleus in the
atom. A sample of data is shown in Fig. 9.2. pW2 at w = 4 is independent of Q2;
the photon is indeed interacting with point-like particles. No form factors, leading
to additional Q2 dependence as in (9.4), are present. Are these particles (called
partons by Bjorken) the same as the quarks discovered in the spectroscopy of
hadrons (Chapter 2)?

Q2 (GeV/c)2

Fig.9.2 The structure function "W2 determined by electron-proton
scattering as a function of Q2 for w = 4. Data are from the Stanford
Linear Accelerator.
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9.2 Partons and Bjorken Scaling

Now that scaling is an approximate experimental fact, we attempt to make the
identification of (9.2) explicit:

xE,xp

(9.7)

Equation (9.7) recognizes the fact that various types of "point" partons make up
the proton (i = u, d, ... ,quarks, with various charges e j , as well as gluons; the
latter do not interact with the photon, of course). They can each carry a different
fraction x of the parent proton's momentum and energy. We introduce the parton
momentum distribution

dP
/;(x) = d; = P

........

(9.8)

which describes the probability that the struck parton i carries a fraction x of the
proton's momentum p. All the fractions x have to add up to 1; therefore,

L f dx x/Ax) = 1.
j'

(9.9)

Here, if sums over all the partons, not just the charged ones i which interact with
the photon. The kinematics can be summarized as follows:

Proton Parton
! !

Energy E xE (9.10)
Momentum PL XPL

PT= 0 PT= 0
Mass M m = (x 2E2 - x 2ifJ'/2 = xM,
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192 Partons

Both the proton and its parton progeny move along the z axis (i.e., PT = 0) with
longitudinal momenta PLand xpL' The definition of the reference frame has to be
made with more care; we shall return to it later on.
For an electron hitting a parton with momentum fraction x and unit charge, we

see from (9.3) and (9.5) that the dimensionless structure functions are

Q2 ( Q2 ) 1 ( 1)F (w) = --I) 1 - - = --I) 1 - - ,
1 4mvx 2mv 2x2w xw

(9.11)

We have used the kinematics of (9.10); w is the dimensionless variable defined in
(9.6). Summing our results for F1,2 for one parton, (9.11), over the partons making
up a proton, (9.7) and (9.8), we obtain

F2(w) = 'Lfdxe; /;(x)xl)(x -,
W

F1(w) = 2"F2(w). (9.12)

It is conventional to redefine F1,2(w) as F1,2(X) and to express the results in
terms of x. Recalling the identification (9.5), we see that (9.12) become, at
large Q2,

with

vW2(v, Q2) --+ F2(x) = 'Le,2x /;(x),

MW1(v,Q2) --+ F1(x) = LF2(x),

(9.13)

(9.14)

1 Q2
X = W = 2Mv . (9.15)

That is, the momentum fraction is found to be identical to the (dimensionless)
kinematic variable x of the virtual photon that we introduced in Chapter 8; see
(8.30). In other words, the virtual photon must have just the right value of the
variable x to be absorbed by a parton with momentum fraction x. It is the delta
function in (9.12) that equates these two distinct physical variables,
The inelastic structure functions F1,2 of (9.13) and (9.14) are functions of only

one variable, namely, x. They are independent of Q2 at fixed x. We say they
satisfy Bjorken scaling.

EXERCISE 9.1 Prove that 0 :s; x :s; 1, as it must be if x represents a
momentum fraction; recall Exercise 8.11.

Note that the kinematics, (9.10), are a bit funny. Assigning a variable mass xM
to the parton is of course out of the question. Clearly, if the parton's momentum
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QCD Lagrangian (simpler form)

&D Lagrangian

In a simpler form, ,
it can be written in a similar

way as in GED,

2 = FM

- [iUmDr-mJY

Dr = Cm-igAnt

Fru = 2A-ZrA +ggabeb Se
abs

f = structure constants
Cully anti-sometrics

&

g -> strong coupling constant
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Feynman rules
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Feynman rules
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